y

Crypto
Project



Project Overview

» 8 Tasks

- Lab assignment parts 1-4

Crypto Project
- Length extension attack
- Hash Collision
- Padding Oracle
- Bleichenbacher

- Webtesting
- https://cryptoproject.gtinfosec.org/

Cr

Georgia
Tech.



Length Extension
Attack



Merkle-Damgard Construction Introduction

Merkle-Damgard Hash Functions (MD5, SHA-1, or SHA-2):
« Built around a compression function f and maintains an internal state s
« Messages are fixed-sized blocks
« Compression function are applied to the current state and block to compute an updated
state, s, .= f(s,b,)

Let m be the message and m_be the message blocks

Let h be the compression function

l.V. is the initialization vector, a fixed constant to initialize the internal state of the hash function
h(m) is the final digest or output of the very last application of the compression function

h(m)

Gr Georgia
Tech.



Length Extension Introduction

« Merkle-Damgard Hash Functions (MD5, SHA-1, or SHA-2) are vulnerable to

Length Extension Attacks
If we know the hash of an n-block message, we can find the hash of longer messages by

applying the compression function for each additional message block that we want to add

* For the project, the SHA-256 hash function will be used
SHA-256 requires final message length to be 64 bytes where padding is added to ensure this

The padding consists of the byte 0x80, followed by as many 0 bytes as necessary, followed by
an 8-byte count of the number of bits in the unpadded message

Note: You will only have to compute the first set of padding (use padding() from pysha256) after the
original commands, the second set of padding, after the malicious command, will be automatically

calculated and appended.

Additional Commands
8 Char & & ddi & command= (For the pm‘;m, only
Password command= command= pacons UnlockSafes UnlockSafes will be uzed) padding

“ee en-l

T P R



Final Project Verification

* The token needed to unlock the safes for The Bank of GTInfosec will be final
hash digest with the appended &command=UnlockSafes
« token = sha256(8 char password || &ommand = ... || padding ||
&command=UnlockSafes || padding)

« The url will need to be updated to match the updated token/digest
 suffix = &command = ... + padding + &command=UnlockSafes

Gr Georgia
Tech.



Bleichenbacher
Attack



RSA Signature Example

« RSA Signature Example:
Let the RSA Key Pair:  Public Key: (e, N)  Private Key: (d, N)

A WO N -

o O

N N N N

Alice wants to send a message “gtinfosec rul3z!" to Bob
Alice hashes the message using SHA-256
Alice pads the message using PKCS #1 v1.5 scheme to fit the size of RSA key

Alice signs the message using her private key (d) to get s = padded_hash*d
(mod n)

) Bob verifies using Alice’s public key (e), result = s*e (mod n)
) If the result matches the padded hash, the signature is valid

Gr Georgia
Tech.



RSA Signature Forgery

Simple Attacks on textbook RSA

1)

Small e value suchas e =3

. If s*e < n, then s*e does not wrap around the modulus and can be ignored

Deterministic and structured format of the PKCS #1 v1.5 padding scheme
Scheme will always have the header 0x0001ff00, magic bytes indicating hash
type, and the hash of the message itself

Bad Signature verification

If the code verifying an RSA signature does not check bit by bit, a forged
signature could bypass the verification (more on the next slides)

Gr Georgia
Tech.



Bad Signature Verification

.- With an encryption method as seen below, a simple verification would be to

1. Check the total number of bytes
2. Strip the leading 00 01 and then the FF bytes

3. Strip the 00 bytes
4. Parse the ASN and verify the SHA 256 digest of 32 bytes

00 01 FFFFFF---FF 00 3031300d060960864801650304020105000420 XXXXXX---XX

k/8—54 bytes ASN.1 “magic” bytes denoting type of hash algorithm SHA-256 digest
(32 bytes)

Gr Georgia
Tech.



Bad Signature Verification

* This method fails to:
* Count the number of FF bytes
* Check the location of the SHA hash

» Therefore false signatures where the arbitrary bytes placed at the end of the
sequence may be verified

00 01 FFFFFF---FF 00 3031300d060960864801650304020105000420 XXXXXX---XX

k/8—54 bytes ASN.1 “magic” bytes denoting type of hash algorithm SHA-256 digest
(32 bytes)

Gr Georgia
Tech.



How Bleichenbacher Works

The Bank of GTInfosec uses e = 3 and all sender public keys are 2048 bits long

1) We want to forge a RSA signature that s*3 = malformed message

2) We can do so by creating a malformed message that is 2048 bits long, and then
finding the cube root of it, s = (malformed message)*{4}

3) When the Bank of GTInfosec goes to verify the signature s*3, it uses a bad
signature verification that only checks for the header, magic bytes, and hash
digest and ignores all other bytes

4) Once it finds the necessary bytes, you will be allowed to initiate the transfer

*Ngte: Remember to take the ceiling and not the floor when calculating for the final
cube root

0001 FF 00 3031300d4060960864801650304020105000420 XXXXXX---XX YYYYYY..-YY

ASN.1 “magic” bytes denoting type of hash algorithm SHA-256 digest k/8—55
(32 bytes) arbitrary bytes

'gia
=4 lech.



Good Luck!

* Visit us during Office Hours or make a post on Ed Discussion if you have
guestions!
* OH Schedule is on the course website: https://gatech.fail

Gr Georgia
Tech.



